Boolean algebra was created by George Boole and is a very powerful tool to describe and design logic circuits. In Boolean algebra the elements can only assume the binary values: 0 or 1.
Boolean algebra is based on the following set of axioms:
β1a.0β
0=02a.1β
1=13a.0β
1=1β
0=04a.IfΒ x=0,Β thenΒ x=15a.xβ
0=06a.xβ
1=x7a.xβ
x=x8a.xβ
x=09a.x=xββ1b.1+1=12b.0+0=03b.1+0=0+1=14b.IfΒ x=1,Β thenΒ x=05b.x+1=16b.x+0=x7b.x+x=x8b.x+x=1ββ
We also have some properties to deal with multiple variables:
β10a.xβ
y=yβ
x11a.xβ
(yβ
z)=(xβ
y)β
z12a.xβ
(y+z)=xβ
y+xβ
z13a.x+xβ
y=x14a.xβ
y+xβ
yβ=x15a.xβ
yβ=x+yβ16a.x+xβ
y=x+y17a.xβ
y+yβ
z+xβ
z=xβ
y+xβ
zββ10b.x+y=y+x11b.x+(y+z)=(x+y)+z12b.x+yβ
z=(x+y)β
(x+z)13b.xβ
(x+y)=x14b.(x+y)β
(x+yβ)=x15b.x+yβ=xβ
yβ16b.xβ
(x+y)=xβ
y17b.(x+y)β
(y+z)β
(x+z)=(x+y)β
(x+z)βββCommutativeAssociativeDistributiveAbsorptionCombiningDeMorganConsensusββ